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Abstract
A method for constructing semianalytical strongly correlated wavefunctions for
single and molecular quantum dots (QDs) is presented. It employs a two-step
approach of symmetry breaking at the Hartree–Fock level and of subsequent
restoration of total spin and angular momentum symmetries via projection
techniques. Illustrative applications are presented for the case of a two-electron
helium-like single QD and a hydrogen-like QD molecule.

(Some figures in this article are in colour only in the electronic version)

Understanding the nature of strong many-body correlations in condensed-matter finite systems
is a fundamental task, which can be facilitated by devising analytical or semi-analytical many-
body wavefunctions that approximate well the exact solutions and capture the essential physical
properties of such systems. The description of strong correlations in the two-dimensional
electron gas in a high magnetic field by the Laughlin wavefunction [1] represents a celebrated
example of such a methodology.

Here we construct semianalytical correlated wavefunctions for electrons in two-
dimensional single and molecular quantum dots (QDs), which are manmade devices created at
semiconductor interfaces and are most often referred to as artificial atoms and molecules
(since they contain a finite number of electrons). To this end, we employ a two-step
approach consisting of symmetry breaking at the Hartree–Fock (HF) single-determinantal
level and subsequent symmetry restoration via projection techniques (PTs) resulting in
multideterminantal wavefunctions. PTs were introduced earlier in quantum chemistry [2] for
the restoration of the total spin of a molecule and in nuclear physics [3, 4] for the restoration
of the total three-dimensional angular momentum (space rotational symmetry) of deformed
open-shell nuclei. Our application of these methods to circular single quantum dots (SQDs)
requires the simultaneous restoration of both the spin and the angular-momentum symmetries.
This requirement poses a more demanding challenge compared to the task of restoring a single
broken symmetry, as is the case with the quantum chemistry and nuclear physics many-body
problems.
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Since the approach of restoration of broken symmetries is largely untested and unknown
in the framework of two-dimensional QDs, we aim in this paper at focusing on methodological
aspects. For simplicity and conceptual clarity, we construct below strongly correlated
wavefunctions for the case of two interacting electrons in an SQD (artificial helium, He-
QD) and in a lateral double QD (artificial hydrogen QD molecule, H2-QDM). Two strongly
correlated electrons (with or without an external magnetic field) may exhibit a complex
behaviour [1, 5, 6] and can provide the foundation for understanding the properties of
a larger number of interacting electrons. Furthermore, the recent growth of interest in
quantum computing focused attention on the potential ability to manipulate the ground-state
entanglement of two-electron QD systems [7].

The two-body Hamiltonian for two interacting electrons constrained to move on a plane
is given by

H = H (r1) + H (r2) + e2/κr12, (1)

where the last term is the Coulomb repulsion with κ being the dielectric constant of the
semiconductor material. H (r) is the single-particle Hamiltonian for an electron in an external
perpendicular magnetic field B and an appropriate potential confinement. For a QDM, the
external confinement is given by a two-centre-oscillator potential, and the single-particle
Hamiltonian is written as

H = T +
1

2
m∗ω2

0(x2 + y ′2
k ) + Vneck(y) +

g∗µB

h̄
B · s, (2)

where y ′
k = y − yk with k = 1 for y < 0 (left) and k = 2 for y > 0 (right). x

denotes the coordinate perpendicular to the interdot axis (y). T = (p − eA/c)2/2m∗,
with A = 0.5(−By, Bx, 0), and the last term in equation (2) is the Zeeman interaction
with g∗ being the effective g factor, µB the Bohr magneton and s the spin of an individual
electron. The shapes described by H are two equal semi-circles connected by a smooth
neck (Vneck(y)). −y1 = y2 > 0 are the centres of these semi-circles, d = y2 − y1 is the
interdot distance and m∗ is the effective electron mass. The case of a SQD is obtained for
d = 0, and in this case the confining potential is purely parabolic. For the smooth neck,
we use Vneck(y) = 1

2 m∗ω2
0[Ck y ′3

k + Dk y ′4
k ]θ(|y| − |yk|), where θ(u) = 0 for u > 0 and

θ(u) = 1 for u < 0. The constants Ck and Dk can be expressed via one parameter, as follows:
Ck = (2 − 4εb)/yk and Dk = (1 − 3εb)/y2

k , where the barrier-control parameter εb = Vb/V0

is related to the actual (controllable) height of the bare barrier (Vb) between the two QDs, and
V0 = m∗ω2

0 y2
1/2. The single-particle levels of H are obtained by numerical diagonalization

(for details see [10]).
In each case, in the first step of our procedure, the two-electron Hamiltonian (equation (1))

is solved [8–10] in the (symmetry-breaking) spin-and-space unrestricted Hartree–Fock (sS-
UHF) approximation; for comparison, the symmetry-adapted restricted Hartree–Fock (RHF)
will also be considered. In all cases, we will use h̄ω0 = 5 meV and m∗ = 0.067 me (this
effective-mass value corresponds to GaAs). We will vary the dielectric constant κ , however,
in order to control the ratio of the strength of the Coulomb repulsion relative to the zero-point
kinetic energy (see in particular the case of the SQD and figure 3 below). The variation of this
ratio provides us with the ability to study the whole range of electron correlations, from the
regime of weak correlations to that of strong correlations.

We start with the case of a lateral H2-QDM in a magnetic field, where only the spin
projection (SP) needs to be considered, since the confining potential lacks circular symmetry.
The example we discuss here1 corresponds to the case of weak interelectron repulsion (the full
1 For a systematic study of the H2-QDM at different values of κ (including κ = 12.9 (GaAs)) and interdot barrier
heights, demonstrating gate control of the entanglement of a pair of electrons, see [10].
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Figure 1. H2-QDM: the two occupied orbitals (modulus square) of the symmetry-broken ‘singlet’
sS-UHF solution for (a) B = 0 and (b) B = 9 T. (c) The singlet–triplet energy difference
as a function of an external perpendicular magnetic field and for three successive levels of
approximation, i.e. the RHF (top solid curve), the sS-UHF (dashed curve) and the GHL (bottom
solid curve). The choice of parameters is: parabolic confinement of each dot h̄ω0 = 5 meV, interdot
distance d = 30 nm, interdot barrier height Vb = 3.71 meV, effective mass m∗ = 0.067 me and
dielectric constant κ = 45. The effective Zeeman coefficient was chosen as g∗ = 0; for a small
nonvanishing value, like g∗ = −0.44, the Zeemann splitting does not alter the orbital densities and
can be simply added to �ε. Up and down arrows denote spins. Distances are in nanometres and
the densities in 10−4 nm−2.

choice of parameters is given in the caption of figure 1). The sS-UHF determinant (henceforth
we drop the prefix sS in subscripts) which describes the ‘singlet’ (see below) ground state of
the H2-QDM is given by the expression

|�UHF(1, 2)〉 = |u(1)v̄(2)〉/√2. (3)

In equation (3), we have used a compact notation for the Slater determinant with u(1) ≡
u(r1)α(1) and v̄(2) ≡ v(r2)β(2), where u(r) and v(r) are the 1s-like (left) and 1s′-like (right)
localized orbitals of the sS-UHF solution, and α and β denote the up and down spin functions,
respectively. Such orbitals for the field-free case are displayed in figure 1(a) (left column).
Similar localized orbitals (which are complex functions) can appear also in the B �= 0 case
(see figure 1(b), right column).

|�UHF(1, 2)〉 is an eigenstate of the z-projection of the total spin, Ŝ = ŝ1 + ŝ2, with
eigenvalue Sz = 0. However, it is not an eigenstate of the square, Ŝ2, of the total spin
(thus the quotation marks in ‘singlet’ above). From the determinant |�UHF(1, 2)〉, one can
generate a singlet eigenstate of Ŝ2 (with zero eigenvalue) by applying the projection operator
P0 ≡ 1 − 
12, where the operator 
12 interchanges the spins of the two electrons.

Thus the singlet state of the two localized electrons is given by the projected wavefunction,

|�(1, 2)〉 ≡ P0|�UHF(1, 2)〉 ∝ |u(1)v̄(2)〉 − |ū(1)v(2)〉. (4)

In contrast to the single-determinantal wavefunctions of the RHF and sS-UHF methods, the
projected many-body wavefunction (4) is a linear superposition of two Slater determinants,
and thus it is an entangled state representing a corrective (post-Hartree–Fock) step beyond
the mean-field approximation. We notice that the spatial reflection symmetry is automatically
restored along with the spin symmetry.
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Equation (4) has the form of a Heitler–London (HL) or valence bond [11] wavefunction.
However, unlike the original HL scheme which uses the orbitals φL (r) and φR(r) of the
separated (left and right) QDs, expression (4) employs the sS-UHF orbitals which are self-
consistently optimized for any separation d , interdot barrier height Vb and magnetic field B .
Consequently, expression (4) can be characterized as a generalized Heitler–London (GHL)
wavefunction. In the context of QDs, the simple HL approach has been proven very useful
in demonstrating [7] that the H2-QDM under an external magnetic field can function as an
elemental two-qubit logic gate. Our more accurate GHL approach has the potential of greatly
improving the quality of similar investigations regarding the implementation of quantum
computing using solid-state nanodevices.

We further notice that our GHL method belongs to a class of PTs known as variation
before projection (VBP), unlike the generalized valence bond method familiar in quantum
chemistry [12], or the spin-coupled valence bond method [13], which employ a variation after
projection (VAP) (see e.g. ch 11.4.2 of [4]). In the context of QDs, a generalization of our GHL
approach along the VAP technique may provide even more accurate results. This, however, is
left for future work, including the development of the pertinent computer codes.

The energy of a projected state is given [4] in general by the formula

EPROJ = 〈�UHF|HO|�UHF〉/〈�UHF|O|�UHF〉, (5)

whereH is the many-body Hamiltonian andO is a general projection operator with the property
O2 = O.

Using the SP operator P0 in place of O, we find for the total energy, E s
GHL, of the singlet

GHL state

E s
GHL = N 2

s [Huu + Hvv + Suv Hvu + Svu Huv + Juv + Kuv], (6)

where Huu etc are the matrix elements of the single-particle Hamiltonian H in equation (1),
and J and K are the direct and exchange matrix elements of e2/κr12. Suv is the overlap integral
of the u(r) and v(r) orbitals,

Suv =
∫

u∗(r)v(r) dr, (7)

and the normalization parameter is given by

N 2
s = 1/(1 + Suv Svu). (8)

At zero magnetic field, the electron orbitals are real functions and equations (6)–(8) reduce
to a form familiar from the generalized valence bond theory of quantum chemistry [12].

For the triplet state with Sz = ±1, the projected wavefunction coincides with the original
HF determinant, so that the corresponding energies in all three approximation levels are equal,
i.e. E t

GHL = E t
RHF = E t

UHF.
In figure 1(c),we display the singlet–triplet energy gap,�ε = E s−E t , of the H2-QDM as a

function of the magnetic field B. For all three levels of approximation,�ε starts from a negative
minimum (singlet ground state) and after crossing the zero value it remains positive (triplet
ground state). However, after crossing the zero line, the RHF curve incorrectly continues to rise
sharply and moves outside the plotted range. After reaching a broad maximum, the positive
�ε branches of both the sS-UHF and GHL curves approach zero for sufficiently large B , a
behaviour which indicates that the H2-QDM dissociates with B . This molecular dissociation
can be further seen in the orbitals themselves: at B = 9 T (figure 1(b)) the orbitals are well
localized on the individual dots, while at B = 0 (figure 1(a)) they extend over the entire
QDM. Note that, in addition to having the proper symmetry, GHL is energetically the best
approximation.
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Figure 2. He-QD at B = 0: (a) the two occupied orbitals (modulus aquare) of the symmetry-
broken ‘singlet’ sS-UHF solution. The rest of the frames display the electron densities at successive
approximation levels, i.e., (b) RHF, (c) sS-UHF, (d) SP alone, (e) S&AMP and (f) exact. See the text
for a description of the acronyms. The choice of parameters is: dielectric constant κ = 8, parabolic
confinemenet h̄ω0 = 5 meV, and effective mass m∗ = 0.067 me. Distances are in nanometers and
the densities in 10−4 nm−2.

We further note that systematic explorations for determining the border of HF instability
(i.e. the appearance of broken-symmetry solutions with lower energy) in the case of the H2-
QDM are not available. At B = 0, this border depends on all four parameters h̄ω0, κ , d and
Vb. For h̄ω0 = 5 meV, d = 30 nm and κ = 45, it was found [10] that this border can be
crossed by reducing the interdot barrier Vb to zero. For the same values of B , h̄ω0 and d , but
for a different κ = 12.9 (stronger interelectron repulsion, as is the case for GaAs), however,
all values of the interdot barrier (Vb � 0) represent cases that lie well within the region of
instability.

Next we address the case of two electrons at B = 0 in a single QD with a parabolic
confinement. As we have shown in earlier publications [8, 9], the sS-UHF solution does not
preserve the rotational symmetry for RW � 1.0 (for RW < 1.0, the sS-UHF solution collapses
onto the RHF one). The Wigner parameter RW expresses the ratio between the interelectron
repulsion Q and the zero-point kinetic energy K ; it is customary to take Q = e2/κl0 and
K ≡ h̄ω0, where l0 = (h̄/m∗ω0)

1/2 is the spatial extent of an electron in the lowest state of
the parabolic confinement. This gives RW ∝ 1/(κ

√
ω0), showing that it can be varied through

the choice of materials (i.e. κ) and/or the strength of the confinement (ω0). For RW � 1.0
and for Sz = 0, the sS-UHF yields [9] an infinite manifold of azimuthally degenerate ground-
state configurations consisting of two localized antipodal orbitals, suggesting formation of an
electron molecule [6, 8, 9] (also referred to as a Wigner molecule). For κ = 8 (RW = 2.39)
and for a specific azimuthal direction (i.e. γ = 0), the two localized orbitals, u(r) and v(r)

with up and down spin, respectively, are depicted in figure 2(a). As was the case with the
double-dot example studied above, the Sz = 0 sS-UHF determinant |�UHF(1, 2)〉 for γ = 0
is given by equation (3) and thus, in addition to the rotational symmetry, it does not preserve
the total-spin symmetry. For the singlet state, one can restore both symmetries successively,
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namely, one can generate appropriate projected wavefunctions,

|�I (1, 2)〉 ≡ O|�UHF(1, 2)〉, (9a)

by applying the product operator2,

O ≡ PI P0, (9b)

where the SP operator P0 produces a two-determinant singlet GHL wavefunction as previously
explained. The angular-momentum projection operator PI yields multideterminantal
wavefunctions having good total angular momentum I . This latter operator produces a linear
superposition of an infinite number of azimuthal GHL wavefunctions and it is given3 by [4]

2πPI ≡
∫ 2π

0
dγ exp[−iγ (L̂ − I )], (10)

where L̂ = l̂1 + l̂2 is the operator for the total angular momentum. In the following we focus
on the ground state4 of the system with I = 0.

It is instructive to examine the transformations of the ground-state electron densities
(EDs) resulting from the successive approximations, RHF, sS-UHF, SP and combined spin
and angular momentum projection (S&AMP). For κ = 8, such EDs are shown in figure 2.
Since the exact solution for two electrons in a parabolic confinement is available [6], we also
plot the corresponding ED for the exact ground state in figure 2(f). The EDs of the initial RHF
(figure 2(b)) and the final S&AMP (figure 2(e)) approximations are circularly symmetric,
while those of the two intermediate approximations, i.e. the sS-UHF and SP, do break the
circular symmetry. This behaviour graphically illustrates the meaning of the term restoration
of symmetry and the interpretation that the sS-UHF broken-symmetry solution refers to the
intrinsic (rotating) frame of reference of the electron molecule. We notice that the S&AMP
electron density exhibits a characteristic flattening at the top in contrast to the more Gaussian-
type RHF one. Thus, although not identical (the exact ED is slightly flatter at the top), the
S&AMP ED closely resembles the exact one displayed in figure 2(f). Further, we remark that
the SP electron density exhibits in the middle a shallower depression than the corresponding
sS-UHF one, in keeping with the fact that the covalent bonding increases the probability of
finding the electrons between the individual dots.

Using the projection operator (9b) in the general equation (5), we obtain for the energy
ES&AMP of the fully projected ground state of the two-electron single QD

ES&AMP =
∫ 2π

0
h(γ ) dγ

/ ∫ 2π

0
n(γ ) dγ, (11)

with

h(γ ) = Hus Svt + Hut Svs + Hvt Sus + Hvs Sut + Vuvst + Vuvts , (12)

and

n(γ ) = Sus Svt + Sut Svs , (13)

s(r) and t (r) being the u(r) and v(r) sS-UHF orbitals rotated by an angle γ , respectively.
Vuvst and Vuvts are two-body matrix elements of the Coulomb repulsion5. Observe that ES&AMP

2 In the case of a triplet state, the sS-UHF determinant with Sz = ±1 preserves the total spin, and thus the application
of PI alone is sufficient.
3 The corresponding expression [3] for the three-dimensional angular-momentum projection uses the Wigner
functions D I

M K (�) (see also ch 11.4.6 in [4]).
4 The family of projected wavefunctions (9) describes all the lowest-energy (yrast band [6]) states with good
angular momentum I = 2, 4, . . ., in addition to the ground state (I = 0). The yrast-band states with odd values,
I = 1, 3, 5, . . ., are generated via a projection of the triplet state.
5 Vuvst ≡ (e2/κ)

∫
dr1

∫
dr2 u∗(r1)v

∗(r2)(1/r12)s(r1)t (r2). In equation (6) Juv = Vuvuv and Kuv = Vuvvu .
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Figure 3. He-QD at B = 0: difference between the ground-state energies of various approximations
and the exact one, plotted versus the dielectric constantκ . From top to bottom, the curves correspond
to the RHF, the sS-UHF, the SP alone and the combined S&AMP approximation. The curve labelled
RHF gives the correlation energy. The choice of parameters is: parabolic confinement h̄ω0 = 5
meV and effective mass m∗ = 0.067me .

represents a rotational average over all the possible orientations of the electron molecule and
that h(0)/n(0) coincides with the expression (6) for the energy E s

GHL of the covalently bonded
H2-QDM.

To further examine how closely expression (9) describes the ground state of the He-QD,
we display in figure 3 the energy deviations of the four approximation steps (i.e. RHF, sS-UHF,
SP and S&AMP) from the exact (EX) [6] ground state, as a function of the dielectric constant
κ . The variation of κ produces a variation in the strength of the interelectron repulsion, with
a larger repulsion (i.e. smaller κ) corresponding to stronger electron correlations.

The correlation energy, Ecor ≡ ERHF − EEX, is defined as the difference between the RHF
ground-state energy and the exact one, and thus it coincides with the top curve in figure 3
denoted as RHF. The ordering (from top to bottom) of the curves in figure 3 reflects the fact
that each subsequent approximation step captures successively a larger portion of the total
correlations, and thus lowers the total energy. From figure 3, one sees that there are two
correlation regimes: in the regime of weak correlations, the three lower curves collapse onto
the RHF one; naturally, this regime corresponds to the normal Fermi liquid and extends to
κ → ∞. The onset of strong correlations and of symmetry-broken HF solutions occurs at
κ = 16.5(RW = 1.16) and extends to κ = 0.

Note that the percentage, Ecor/EEX, of correlations with respect to the exact energy is 6.8
and 49.5% for κ = 16.50 and 1, respectively. These values are much higher than the values
encountered in natural atoms; for this reason, two-dimensional QDs are referred to as strongly
correlated systems. Thus it is not surprising that the RHF error in figure 3 grows exponentially
for stronger correlations (smaller κ or larger RW ). However, it is remarkable that the S&AMP
approximation (where all symmetries have been restored) converges to the exact result for
smaller κ . Note that the exact ground-state energy is 19.80 meV for κ = 8 (RW = 2.39) and
51.83 meV for κ = 1 (RW = 19.09), resulting for the S&AMP in a relative error of 4 and
0.7%, respectively6. These results are in agreement with the experience from nuclear physics,
where it has been found [4] that the VBP yields reliable results in the case of strong symmetry
breaking (strongly deformed nuclei).

6 For κ = 8, the fraction of correlation energy captured by the successive approximations is sS-UHF 44.4%, SP
57.2% and S&AMP 73.1%; the corresponding values for κ = 1 are 94.5, 94.5 and 98.5%.
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Interestingly, the SP curve collapses onto the sS-UHF one for κ � 3.2. This behaviour
defines [8] an intermediate regime7 between the Fermi liquid and the regime of strongly
crystallized Wigner molecules (κ � 3.2). In the latter regime, the overlap (Suv) between
the antipodally localized electron orbitals is very small, such that the sS-UHF energy is not
effectively lowered by the SP.

We have demonstrated that the sS-UHF method in conjunction with the companion step
of restoration of the spin and space symmetries via PTs (when such symmetries are broken)
can provide appropriate semianalytical wavefunctions for an accurate description of strongly
correlated electrons in artificial atoms and molecules.

This research is supported by the US DOE (grant No FG05-86ER-45234). Computations
performed at the GIT Center for Computational Materials Science, and the National Energy
Research Scientific Computing Center (NERSC), Lawrence Berkeley National Laboratory,
California.
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